Anomaly Detection Requires Better Representations
نویسندگان
چکیده
Anomaly detection seeks to identify unusual phenomena, a central task in science and industry. The is inherently unsupervised as anomalies are unexpected unknown during training. Recent advances self-supervised representation learning have directly driven improvements anomaly detection. In this position paper, we first explain how representations can be easily used achieve state-of-the-art performance commonly reported benchmarks. We then argue that tackling the next generation of tasks requires new technical conceptual learning.
منابع مشابه
3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملAnomaly Detection
This chapter presents an extension of conformal prediction for anomaly detection applications. It includes the presentation and discussion of the Conformal Anomaly Detector (CAD) and the computationally more efficient Inductive Conformal Anomaly Detector (ICAD), which are general algorithms for unsupervised or semi-supervised and offline or online anomaly detection. One of the key properties of...
متن کاملBetter Mixing via Deep Representations
It has been hypothesized, and supported with experimental evidence, that deeper representations, when well trained, tend to do a better job at disentangling the underlying factors of variation. We study the following related conjecture: better representations, in the sense of better disentangling, can be exploited to produce Markov chains that mix faster between modes. Consequently, mixing betw...
متن کاملMultivariate Conditional Anomaly Detection for Clinical Anomaly Detection
This paper overviews the background, goals, past achievements and future directions of our research that aims to build a multivariate conditional anomaly detection framework for the clinical application. Background and Goals We humans are prone to error. Despite startling advances in medicine, the occurrence of medical errors remains a persistent and critical problem. Although various computera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2023
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-031-25069-9_4